Lecture 5 : Weak Law of Large Numbers
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References: Durrett [Sections 1.4, 1.5]

5.1 Independence

Denote by (€2, F,P) a probability space. Consider a sequence of random variables
X1, Xo, ... with some distributions on (R, B),

where F; is the cumulative distribution function of X;. If F(z) = F(x), we say the
X, are identically distributed. If

P <m{Xz < fz}> = HFz(l'z) (5.1)
i=1 =1
for all choices of z; € R, X1, X, ..., X, are independent.

Remark 5.1 For any choice of cumulative distribution functions F; there exists a
probability space (Q, F,P) with random variables X; which are independent.

The remark follows from our discussion of product spaces. Consider only two random
variables, X; and X5. As seen in Lecture 4, there is a product measure on 2 = R x R
with projection maps X;, X;(w) = x; where w = (21, x2). This idea extends easily
to finite n, with = R x R x --- x R = R™ and projection maps X;(w) = z; for
1 = 1,2,...,n. The following is a simple example of the finite n case where the
random variables have densities.

Example 5.2 Consider

Fi(x) = / " Ry
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where f; is the density of X;. Then, the joint law of (X1,...,X,) on R™ has density
h(z) =] fix:)
i=1
with respect to Lebesque measure dxy, dxs, . .. dx,.

For an infinite sequence of random variables, X1, Xs, ..., we must consider the infinite
product space, 2 = R x R x -+ = R* equipped with the projections X;(w) = x;
where w = (21,9, .. .).

Remark 5.3 It is a nontrivial fact of measure theory that there exists a unique prob-
ability measure P on (2, F), where F is the product o-field generated by X;, so that
for every n, X1, Xs,... X, are independent as in equation (5.1). The proof uses Kol-
mogorov’s extension theorem.

5.1.1 Construction of Independent Random Variables

As a small digression, we consider a method of constructing independent random
variables X; on ([0,1], Leb). As discussed previously (Lecture 2), we can create a
random variable X; with distribution F; by using the inverse of the distribution,
X, = FTHU,), where U, is a uniform[0, 1] random variable.

Using this method, to generate n independent random variables X; with distributions
F;, we will need to start with n independent uniform random variables. The following
is a useful method for generating any number of independent uniforms from a single
uniform|0, 1] random variable. First, we consider the simple case of generating two
i.i.d. uniform random variables from a single uniform U. We begin by considering
the binary expansion of U,

Dy | Dy  Ds
U=—+—F+4+="1+...
2+22+23+

where D; is the i*® digit in the binary expansion. Each D; takes on the value 0 or 1
with equal probability on subintervals of [0,1]. Thus, if we then let

Up=—"+—+"+...,
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the random variables U; and U, are uniform[0, 1] and independent (a result of the
fact that functions of disjoint collections of independent random variables are inde-
pendent). This method can be used to generate a finite or an infinite sequence of
independent uniform random variables. For an infinite sequence of random variables,
we consider

=1

where |N;| = oo and the N; are disjoint. The construction above is repeated with U;
defined using the digits D; where j € N;.

5.2 Weak Law of Large Numbers

The Weak Law of Large Numbers is a statement about sums of independent ran-
dom variables. Before we state the WLLN; it is necessary to define convergence in
probability. We say Y,, converges in probability to Y and write Y,, — Y if, Ve > 0,

Pw:|Y,(w)=Y(w)|>€ —0, n—oo.

Theorem 5.4 (Weak Law of Large Numbers) Let X, X1, Xs,... be a sequence
of i.i.d. random variables with E|X| < oo and define S,, = X1+ Xo+---+ X,,. Then
St px.

n

Proof: In this proof, we employ the common strategy of first proving the result
under an L? condition (i.e. assuming that the second moment is finite), and then
using truncation to get rid of the extraneous moment condition.

First, we assume FX? < co. Because the X; are iid,

Var (%) _ ! iVar(Xi) _ YarlX)

n? 4 n

By Chebychev’s inequality, V € > 0,

P(i—EX‘>6) Sl\/ar<&) :Var(X) — 0.

n €2 n ne2
Thus, Sn—” —, EX under the finite second moment condition. To transition from L2
to L', we use truncation. For 0 < x < oo let
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Xok = Xil(x,/<a)
Yor = X1 xy>2)

Then, we have X, = X, + Y, and

S 1 1 &

Pn_ 2N x -

A LIRS
k=1 k=1

Applying Jensen’s inequality, we have

E

1 n
5;3@

1 n
<= EWYal = B(X[1xp0)
k=1

and by DCT,
E(|X|1(|X‘>x)) — O, r — OQ.

Fix 1 > € > 0 and choose x such that

1) (|X|1(|X\>m)) = E|Yx1| < 62.

Let p, = E(X,1) and g = E(X). Then, we also have

e — pl < [E(Yir)| < € <e.

5-4

Let B, = {|Usn — p1z| > €} and C,, = {|Vyn| > €}. Noting that F(X?2) < 2% < oo,
we can apply the Weak Law of Large Numbers to U,,. Thus, we choose N > 0 such

that V. n > N,

P(B,) = P(|Upe — pz| > €) < €.

Now, by Chebyshev’s inequality, we also have

P(Cn) = P(|[Van| > €)

< E|V,,| < E|Y.| <
< <e
€ €

But on BENCS = (B, UC,)° we have |Uy, — p:| < € and |V, | <€, and therefore
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S
Thus, Vn > N,
Sn
IP(——EX >3e) <P(B,UC,) < 2
n

9-9



