
Lecture 5 : Weak Law of Large Numbers
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References: Durrett [Sections 1.4, 1.5]

5.1 Independence

Denote by (Ω,F , P) a probability space. Consider a sequence of random variables
X1, X2, . . . with some distributions on (R,B),

P (Xi ≤ x) = Fi(x)

where Fi is the cumulative distribution function of Xi. If Fi(x) ≡ F (x), we say the
Xi are identically distributed. If

P

(

n
⋂

i=1

{Xi ≤ xi}

)

=
n
∏

i=1

Fi(xi) (5.1)

for all choices of xi ∈ R, X1, X2, . . . , Xn are independent.

Remark 5.1 For any choice of cumulative distribution functions Fi there exists a
probability space (Ω,F , P) with random variables Xi which are independent.

The remark follows from our discussion of product spaces. Consider only two random
variables, X1 and X2. As seen in Lecture 4, there is a product measure on Ω = R×R

with projection maps Xi, Xi(ω) = xi where ω = (x1, x2). This idea extends easily
to finite n, with Ω = R × R × · · · × R = R

n and projection maps Xi(ω) = xi for
i = 1, 2, . . . , n. The following is a simple example of the finite n case where the
random variables have densities.

Example 5.2 Consider

Fi(x) =

∫ x

−∞

fi(y)dy
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where fi is the density of Xi. Then, the joint law of (X1, . . . , Xn) on R
n has density

h(x) =
n
∏

i=1

fi(xi)

with respect to Lebesgue measure dx1, dx2, . . . dxn.

For an infinite sequence of random variables, X1, X2, . . ., we must consider the infinite
product space, Ω = R × R × · · · = R

∞ equipped with the projections Xi(ω) = xi

where ω = (x1, x2, . . .).

Remark 5.3 It is a nontrivial fact of measure theory that there exists a unique prob-
ability measure P on (Ω,F), where F is the product σ-field generated by Xi, so that
for every n, X1, X2, . . .Xn are independent as in equation (5.1). The proof uses Kol-
mogorov’s extension theorem.

5.1.1 Construction of Independent Random Variables

As a small digression, we consider a method of constructing independent random
variables Xi on ([0, 1], Leb). As discussed previously (Lecture 2), we can create a
random variable X1 with distribution F1 by using the inverse of the distribution,
X1 = F−1

1 (U1), where U1 is a uniform[0, 1] random variable.

Using this method, to generate n independent random variables Xi with distributions
Fi, we will need to start with n independent uniform random variables. The following
is a useful method for generating any number of independent uniforms from a single
uniform[0, 1] random variable. First, we consider the simple case of generating two
i.i.d. uniform random variables from a single uniform U . We begin by considering
the binary expansion of U ,

U =
D1

2
+

D2

22
+

D3

23
+ . . .

where Di is the ith digit in the binary expansion. Each Di takes on the value 0 or 1
with equal probability on subintervals of [0,1]. Thus, if we then let

U1 =
D1

2
+

D3

22
+

D5

23
+ . . .

U2 =
D2

2
+

D4

22
+

D6

23
+ . . . ,
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the random variables U1 and U2 are uniform[0, 1] and independent (a result of the
fact that functions of disjoint collections of independent random variables are inde-
pendent). This method can be used to generate a finite or an infinite sequence of
independent uniform random variables. For an infinite sequence of random variables,
we consider

N =

∞
⋃

i=1

Ni

where |Ni| = ∞ and the Ni are disjoint. The construction above is repeated with Ui

defined using the digits Dj where j ∈ Ni.

5.2 Weak Law of Large Numbers

The Weak Law of Large Numbers is a statement about sums of independent ran-
dom variables. Before we state the WLLN, it is necessary to define convergence in
probability. We say Yn converges in probability to Y and write Yn

P

−→ Y if, ∀ε > 0,

P (ω : |Yn(ω) − Y (ω)| > ε) → 0, n → ∞.

Theorem 5.4 (Weak Law of Large Numbers) Let X, X1, X2, . . . be a sequence
of i.i.d. random variables with E|X| < ∞ and define Sn = X1 +X2 + · · ·+Xn. Then

Sn

n

P

−→ EX.

Proof: In this proof, we employ the common strategy of first proving the result
under an L2 condition (i.e. assuming that the second moment is finite), and then
using truncation to get rid of the extraneous moment condition.

First, we assume EX2 < ∞. Because the Xi are iid,

Var

(

Sn

n

)

=
1

n2

n
∑

i=1

Var(Xi) =
Var(X)

n
.

By Chebychev’s inequality, ∀ ε > 0,

P

(
∣

∣

∣

∣

Sn

n
− EX

∣

∣

∣

∣

> ε

)

≤
1

ε2
Var

(

Sn

n

)

=
Var(X)

nε2
→ 0.

Thus, Sn

n

P

−→ EX under the finite second moment condition. To transition from L2

to L1, we use truncation. For 0 < x < ∞ let
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Xxk = Xk1(|Xk|≤x)

Yxk = Xk1(|Xk|>x)

Then, we have Xk = Xxk + Yxk and

Sn

n
=

1

n

n
∑

k=1

Xxk +
1

n

n
∑

k=1

Yxk

= Uxn + Vxn

Applying Jensen’s inequality, we have

E

∣

∣

∣

∣

∣

1

n

n
∑

k=1

Yxk

∣

∣

∣

∣

∣

≤
1

n

n
∑

k=1

E|Yxk| = E(|X|1(|X|>x))

and by DCT,
E(|X|1(|X|>x)) → 0, x → ∞.

Fix 1 > ε > 0 and choose x such that

E
(

|X|1(|X|>x)

)

= E|Yx1| < ε2.

Let µx = E(Xx1) and µ = E(X). Then, we also have

|µx − µ| ≤ |E(Yx1)| < ε2 < ε.

Let Bn = {|Uxn − µx| > ε} and Cn = {|Vxn| > ε}. Noting that E(X2
xk) ≤ x2 < ∞,

we can apply the Weak Law of Large Numbers to Uxn. Thus, we choose N > 0 such
that ∀ n > N ,

P(Bn) = P(|Unx − µx| > ε) < ε.

Now, by Chebyshev’s inequality, we also have

P(Cn) = P(|Vxn| > ε) ≤
E|Vxn|

ε
≤

E|Yx1|

ε
≤ ε

But on Bc
n ∩ Cc

n = (Bn ∪ Cn)
c, we have |Uxn − µx| ≤ ε and |Vxn| ≤ ε, and therefore
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∣

∣

∣

∣

Sn

n
− µ

∣

∣

∣

∣

≤ |Uxn − µx| + |Vxn| + |µx − µ| ≤ 2ε + ε2 ≤ 3ε.

Thus, ∀ n > N ,

P

(
∣

∣

∣

∣

Sn

n
− EX

∣

∣

∣

∣

> 3ε

)

≤ P(Bn ∪ Cn) ≤ 2ε.


